Spring 2017 MATH5012

Exercise 3

(1) For $a, b>0$, set

$$
f(x)= \begin{cases}x^{a} \sin \left(x^{-b}\right), & 0<x \leq 1 \\ 0, & x=0\end{cases}
$$

Show that f is in $B V[0,1]$ iff $a>b$.
(2) A function is called Lipschitz continuous on an interval I if $\exists M>0$ such that

$$
|f(x)-f(y)| \leq M|x-y|
$$

(a) Show that every Lipschitz continuous function is absolutely continuous on I.
(b) Show that there are always absolutely continuous functions which are not Lipschitz continuous.
(3) Assume that $1<p<\infty, f$ is absolutely continuous on $[a, b], f^{\prime} \in L^{p}$, and $\alpha=1 / q$, where q is the exponent conjugate to p. Prove that $f \in \operatorname{Lip} \alpha$.
(4) Show that the product of two absolutely continuous functions on $[a, b]$ is absolutely continuous. Use this to derive a theorem about integration by parts.
(5) Suppose $E \subset[a, b], m(E)=0$. Construct an absolutely continuous monotonic function f on $[a, b]$ so that $f^{\prime}(x)=\infty$ at every $x \in E$.

Hint: $E \subset \bigcap V_{n}, V_{n}$ open, $m\left(V_{n}\right) \leq 2^{-n}$. Consider the sum of the characteristic functions of these sets.
(6) Let f be in $A C[a, b]$. Show that the total variation for f of f is also in $A C[a, b]$. Moreover,

$$
T_{f}(b)=\int_{a}^{b}\left|f^{\prime}(t)\right| d t
$$

(7) Let X and Y be topological spaces having countable bases.
(a) Show that $X \times Y$ has a countable base. (In product topology on $X \times Y$, a set G is open if $\forall(x, y) \in G, \exists G_{1}$ open in X, G_{2} open in Y such that $(x, y) \in G_{1} \times G_{2} \subset G$.)
(b) Let μ and ν be Borel measures on X and Y respectively. Show that $\mu \times \nu$ is a Borel measure.
(8) Let μ be the product measure $\mathcal{L}^{1} \times \cdots \times \mathcal{L}^{1}$ on \mathbb{R}^{n}. Show that μ is equal to \mathcal{L}^{n}.
(9) Fix $a_{1}=0<a_{2}<a_{3}<\cdots<a_{n} \uparrow 1$ and let g_{n} be a continuous function, $\operatorname{spt} g_{n} \subset\left(a_{n}, a_{n+1}\right), n \geq 1, \int g_{n}=1$. Let

$$
f(x, y)=\sum_{n=1}^{\infty}\left(g_{n}(x)-g_{n+1}(x)\right) g_{n}(y)
$$

Verify that

$$
\begin{aligned}
& \int\left(\int f d x\right) d y=0, \text { but } \\
& \int\left(\int f d y\right) d x=1
\end{aligned}
$$

and f is \mathcal{L}^{2}-measurable. Explain why Fubini's theorem cannot apply.
(10) Let μ and ν be outer measures defined on X and Y respectively and let f be μ-measurable and $g \nu$-measurable with values in $(-\infty, \infty]$. Is it true that $(x, y) \mapsto f(x)+g(y)$ measurable in $\mu \times \nu$? How about the map $(x, y) \mapsto f(x) g(y)$?
(11) (a) Suppose that f is a real-valued function in \mathbb{R}^{2} such that each section f_{x} is Borel measurable and each section f^{y} is continuous. Prove that f is Borel measurable in \mathbb{R}^{2}. There is a hint given in $[R]$.
(b) Suppose that g is a real-valued function in \mathbb{R}^{n} which is continuous in each of the n-variables separately. Prove that g is Borel.
(12) Suppose that f is real-valued in \mathbb{R}^{2}, f_{x} is Lebesgue measurable for each x, and f^{y} is continuous for each y. Suppose that $g: \mathbb{R} \rightarrow \mathbb{R}$ is Lebesgue measurable, and put $h(y)=f(g(y), y)$. Prove that h is Lebesgue measurable on \mathbb{R}. Hint: Use Problem 5.
(13) Give an example of two measurable sets A and B in \mathbb{R}^{2} but $A+B$ is not measurable.

Suggestion: For the two-dimensional case, take $A=\{0\} \times[0,1]$ and $B=\mathcal{N} \times\{0\}$ where \mathcal{N} is a non-measurable set in \mathbb{R}.

