Spring 2017 MATH5012

Exercise 3

(1) For a, b > 0, set

$$f(x) = \begin{cases} x^{a} \sin(x^{-b}), & 0 < x \le 1\\ 0, & x = 0. \end{cases}$$

Show that f is in BV[0,1] iff a > b.

(2) A function is called Lipschitz continuous on an interval I if $\exists M > 0$ such that

$$|f(x) - f(y)| \le M |x - y|.$$

- (a) Show that every Lipschitz continuous function is absolutely continuous on *I*.
- (b) Show that there are always absolutely continuous functions which are not Lipschitz continuous.
- (3) Assume that 1 , <math>f is absolutely continuous on [a, b], $f' \in L^p$, and $\alpha = 1/q$, where q is the exponent conjugate to p. Prove that $f \in \text{Lip}\alpha$.
- (4) Show that the product of two absolutely continuous functions on [a, b] is absolutely continuous. Use this to derive a theorem about integration by parts.
- (5) Suppose E ⊂ [a, b], m(E) = 0. Construct an absolutely continuous monotonic function f on [a, b] so that f'(x) = ∞ at every x ∈ E.
 Hint: E ⊂ ∩ V_n, V_n open, m(V_n) ≤ 2⁻ⁿ. Consider the sum of the characteristic functions of these sets.
- (6) Let f be in AC[a, b]. Show that the total variation for f of f is also in AC[a, b]. Moreover,

$$T_f(b) = \int_a^b |f'(t)| \ dt.$$

- (7) Let X and Y be topological spaces having countable bases.
 - (a) Show that $X \times Y$ has a countable base. (In product topology on $X \times Y$, a set G is open if $\forall (x, y) \in G$, $\exists G_1$ open in X, G_2 open in Y such that $(x, y) \in G_1 \times G_2 \subset G$.)
 - (b) Let μ and ν be Borel measures on X and Y respectively. Show that $\mu \times \nu$ is a Borel measure.
- (8) Let μ be the product measure $\mathcal{L}^1 \times \cdots \times \mathcal{L}^1$ on \mathbb{R}^n . Show that μ is equal to \mathcal{L}^n .
- (9) Fix $a_1 = 0 < a_2 < a_3 < \dots < a_n \uparrow 1$ and let g_n be a continuous function, $\operatorname{spt} g_n \subset (a_n, a_{n+1}), n \ge 1, \int g_n = 1$. Let

$$f(x,y) = \sum_{n=1}^{\infty} (g_n(x) - g_{n+1}(x))g_n(y).$$

Verify that

$$\int \left(\int f \, dx \right) \, dy = 0, \text{ but}$$
$$\int \left(\int f \, dy \right) \, dx = 1,$$

and f is \mathcal{L}^2 -measurable. Explain why Fubini's theorem cannot apply.

- (10) Let μ and ν be outer measures defined on X and Y respectively and let f be μ -measurable and g ν -measurable with values in $(-\infty, \infty]$. Is it true that $(x, y) \mapsto f(x) + g(y)$ measurable in $\mu \times \nu$? How about the map $(x, y) \mapsto f(x)g(y)$?
- (11) (a) Suppose that f is a real-valued function in \mathbb{R}^2 such that each section f_x is Borel measurable and each section f^y is continuous. Prove that f is Borel measurable in \mathbb{R}^2 . There is a hint given in [R].
 - (b) Suppose that g is a real-valued function in \mathbb{R}^n which is continuous in each of the *n*-variables separately. Prove that g is Borel.

- (12) Suppose that f is real-valued in \mathbb{R}^2 , f_x is Lebesgue measurable for each x, and f^y is continuous for each y. Suppose that $g : \mathbb{R} \to \mathbb{R}$ is Lebesgue measurable, and put h(y) = f(g(y), y). Prove that h is Lebesgue measurable on \mathbb{R} . Hint: Use Problem 5.
- (13) Give an example of two measurable sets A and B in ℝ² but A + B is not measurable.
 Suggestion: For the two-dimensional case, take A = {0}×[0,1] and B = N×{0} where N is a non-measurable set in ℝ.